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1. Preliminaries and notations.

Let E be a real separable Banach space with norm ||-|| and Borel o-field
B. Let P(E) be the set of all probability measures on B which, with the
convolution "*" and the weak convergence topology, becomes a topoloaical
semigroup. By H, => U owe denote the weak convergence of My to u as noe, for
s M € P(E). A u e P{E) is said to be infinitely divisible if for every
integer n > 2 there is u_ « P(E) such that u;" = u. The class ID(E) of all
infinitely divisible measures on E is a closed subsemigroup of P(E). Further-
more, each u « ID(E) is uniquely determined by the triplet: a vector a ¢ E, a
Gaussian covariance operator R and a Lévy measure M, cf. Araujo and Giné (1980).
In this case we write 1 = [a,R,M]: note that Araujo and Gine (1980) use the
notation: p = S(a)*Y*C]POiS(M), where v is a symmetric Gaussian measure with
the covariance operator R.

Let Q be a fixed bounded linear operator on E such that 1im exp(-t0) = 0

30
in the operator topology. It is easy to see that 0 is an isomorphism on F.
Indeed, since the function t - lle't0|| is submultiplicative and vanishes at

bt for all

+o there are positive constants a and b such that ||e'tQ|| < ae”
t > 0. Hence Bochner integral fge'tth exists and is equal to the inverse
operator to N. Now we define

L(Q) := {u e P(E): ¥(£50) T (uy < P(E)) ume”ueny)

(recall that for a measure v on E and a Borel measurable function f on E the
measure fu is defined by (fv)(B) = v(f '(B)) for all B ¢ B). Observe that

L(Q) coincides with the Lévy class L of all asymptotic distributions of

partial sums of independent random variables, if Q = Id is the identity operator
on E. In general, L(0) is a class of limit distributions of partial sums of

independent random variables normed by linear bounded operators on E, cf.

Urbanik (1978). Moreover L(0Q) is a closed subsemigroup of ID(E).




Let DE[O,w) denote the set of all functions from [0,°) into E which are riaht
continuous and have left limits. The topoloqy in DE[O,w) is defined as in Lindwall
(1972) {cf. also Gikhman and Skorohod (1974)) and DE[O,m) eauippned with such a
topology is a separable metric space. For a DE[O,m)-valued random variable

tA

X = {X(t):tEO} and the operator valued function t -~ e, where 2 is a bounded

linear operator on E, we define random intearal as follows:

] etPax(t) := ePPx(b) - *x(a) - j d(e*fyx(t)
(a,b] (a,b]

ebAX(b) - eaAX(a) - (etAA)X(t)dt,
(a,b]

0 < a < b < «, where the last stochastic integral is defined path-wise; cf.
Jurek (1982) and Jurek and Vervaat (1983).

Let Q be as above. Jurek (1982) has shown that v ¢ L(Q) if and only if
there exists a DE[O,m)-va1ued random variable X with independent and stationary

increments, X(0) = 0 and E Tog (1 +||X(1)]]) < = such that

(1) v = L j e ax(t)),
(0,)

where L(£) denotes the distribution of a random variable £. Here

l( )e'todx(t) is defined as the 1imit a.s. (or in probability) of
0,

e t4x(t) as b +=, and this Timit exists if and only if E Joa (1+]1X(1)]1)<wo;

[(O,b]

cf. Jurek (1982). Let

ID := 1D

100 (E) := {u e ID(E): J’ Tog(14] x| | J1ldx) < «}.

E
Since the distribution of X is determined by L(X(1)) = ne ID

loq

log’ the eauation

(1) can be rewritten as




The mapping JQ is an algebraic isomorphism between the semigroups ID1°° and

L(Q), and its fixed-points are the operator-stable measures (stable measures
N if Q is the identity operator), cf. Jurek (1982). The aim of this paper is
. to describe the topological properties of JQ and to find elements of L(Q)

which generate, by taking convolutions and weak 1imits, the entire class L(Q).

a
o 4

LN AN R S Ay

.........................

....................



IR IR s el SR ML B

2. Main results.
Let u « P(E) be such that I log (1 + ||x||)un(dx) <o, ne N u {0}
We say that u, log-converges to Hgs and write un:>loq Mo if Wy = Hg and

Tim I Tog(1 + ||x||)un(dx) = Je log(1 + ||x||)u0(dx). Using Billinasley

N
(1968) Theorems 5.1 and 5.4 it is easy to deduce that ¥n =>10g Mo if and only
if => Un and Tim s i) log (1 + dx) = 0.
Un log ~0 fom n:l;q {HXH >t} q ( HX”)Un( x)
Theorem 1. Let Xn, ne N u {0} be DE[O,w)-vaZued random variables with
stationary independent increments, Xn(O) = 0 and L(Xn(I)) € ID'log' Then, as

>
n ©,

L ([ ] e ax () = L(J

e'tquo(t))
(0,) (0,x)

if and only if
LX (1)) =154 LEXp(1)).

In other words, JQ(Un) => ‘]Q(“O) for some (each) Q if and only if Hp z>1oqu0'

Corollary 1. Under the assumptions of Theorem 1
L(I(O‘m)e‘thXn(t)) > L(I(O,m)e'tquo(t)) if and only if LX (1)) > L(X(1))

and the sequence {log (1 + ||Xn(1)||)}:___] is uniformly inteirable.

Since conditions for the weak convergence of infinitely divisible measures ’
are usually given in terms of the corresponding triplets we shall 1ikewise
characterize the uniform integrability of {log (1 + len(l)ll)}. Because in our

annroach only certain properties of the logarithmic function are essential we
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shall, in fact, prove a more general theorem.

Let & be the class of all continuous functions ¢: E - (0.,») such that for

every x,y ¢ E

o(x + y) < colx)oly),

where ¢ = c{¢) is a positive constant.

Note that if y: E ~ [0,~) is a subadditive continuous function i.e.

p(x +y) < dly(x) + w(y)] for all x,y « E and some d > 1, then o{x):= d+p(x)
belongs to ¢ with ¢ = 1. The following are examples of such functions:

o(x) = exp(r |1x]]), A > 0, w(x) = [|x]|P, p > 0 and y(x) = Tog (1 + ||x]]).

Theorem 2. Let ¢ ¢ ¢ and My = [an, Rn, Mn] be infinitely divisible

distributions on E. Assume that {un} is relatively compact. Then

1im sup [ ¢(x)u_(dx) = 0
tso n J{g(x) > t} n

if and only if
1im sup j ¢(x)Mn(dx) = 0.
tr n /{6(x) > t}

Note that de Acosta and Gine (1979) (cf. also de Acosta (1980) studied the uniform
intearability of similar functions in the context of the General Central Limit

Theorem in Banach spaces. Qur proof uses some of their arauments and results.
Corollary 2. Under asswmptions of Theorem |

f e Manen - e
(0,) (0,00)

if and only 1f
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LG ()= Tag, R, M1 => [a,R,M] = L(X(1))
and

1im sup Tog(1 + ||x]|]) dM (x) = 0. .
B Tk > v

.

In the case E = l!d, Corollary 2 has been proven by Sato and Yamazato
(1984). Their proof uses, in an essential way, arquments of Ild and is
completely different from ours.

The class ID(E) of all infinitely divisible measures on E can be
described as the smallest closed subsemigroup of P(E) containing all symmetric
Gaussian measures and all shifted compound Poisson measures of the form
[x,0,x%(y)], where, x,y ¢ E and » > 0, cf. Araujo and Giné (1980). Using the

homeomorphism JQ: ID] -~ L(Q) we shall describe a set of generators of L{Q).

0g
Let SQ be the unit sphere in E with respect to the norm aiven by

1\x1\Q:= fglle'th]Idt. For every a > 0 and z « SQ we define a measure

Ma,z on B(E\{0}) by

M, ,(F) = J 1.(s%2)s7ds, F e B(EV(OD).
0

Since / min {1,||x||}MOt z(dx) < oo, Mu . is a Levy measure onE cf. Araujo and

Giné (1980), Theorem 6.3.(i). Let K, consist of all generalized Poissonian

Q

measures [x,O,xMa z], XeE,a>0,x>0and z ¢ SQ and of all Gaussian

measures [0,R,0] such that QR + RQ* is a nonnegative operator.

Theorem 3. The class L(Q) is the smallest closed subsemigroup of ID(E)

containing the set KQ.

In the case when E is a Hilbert space Jurek (1982) has obtained a slightly

different set of generators of L(Q) and his proof is completely different from ours.




..............

3. Proof of Theorem 1.

The proof is preceded by some auxilliary lemmas and propositions, which

may be interesting themself.

Lemma 1. 4 family {EG}QFI of real random variables is uniformly inte.:rable

7 and only 1f
[ o]

(
1im sup j P{le ]l > t} = 0.
T qel T

Proof. The necessity follows from the inequality

£, JdP = TP{yE | > T} + J P{lg | > t}dt > I:P{IEQI >t} dt.
e, | > T T

The sufficiency we obtain as follows

TP {lgql > 2T}

| A

gl - 71 dp
el > 21}

b A

£ aP - TP (e | > T)
tle [>T
['P{!ga| > t) dt
.

n

and hence

(o o]

™ f
[ im0 <2 (gl >t [ R(g ] > 6ot - 0
{!Ea] > 2T} T 27

uniformly in o as T - o,

Proposition 2. (Skorohod (1957), Lemma 1.4). 72t Z(t), t  [a,b] e ~

stochastic process with independent increments and traiectories in DE[a’b]'
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Then for every r > 0

Plsup  [1Z(t) - Z(a)|] > 2r} < cP{|]Z(b) - Z(a)]|] > r},
ast<h ;

where ¢ = (1 - sup P{||Z(t) - Z(b)]}| > r‘})'] is supposed to be rositive. ¢
a<t<b
Lemma 3. Let ¢: [0,0) » [0,o) be an increasing function such that for some
k >0 and Xg > 0 w(2x) < ky(x) for all x > Xo+ Suppose 2(t), t ¢ [a,b] 75 a
stochastic process with independent increments and paths in DE[a’b]' Further-

more asswre
(1) {Zn(t) - Zn(b): a<t<b,ne N} is bounded in prcbability;

(ii) {w(HZn(b) - Zn(a)ll): ne¢ N} i<s uniformly intesrable.

Then {¢(Sup HZn(t) - Zn(a)H): ne N} is also uniformly integrable.
a<t<h

Proof. From (i) we have that P{||Z [t)-Z (b)[| > r} < & for all ror,

neNand t ¢ [a,b]. By Proposition 2 we get

P{su 2 (t) -2 (a)ll >2r} < 2P {|[Z (b) - Z (a)]] > r}
af_gibl‘n ()11 < 2 Az, nt@)

for all r > and n ¢ N. Therefore for T > w(z(rovxo)) we obtain

00

Plw(sup |1Z,(t) - Z (a)}]) > uidu
T a<t<b

'

= | ptsup 11Z,(t) - Z,(a) 11 > v (u)) du
T ast<hb

A

2 [ # 1112,00 - @11 > o a




o

2 JTP{MZHZn(b) -z (a)]]) > u} du

[ Piul1z,0) - Z(a)l]) > uk”
.

|

| A

} du

a [T Pru(11Z.(b) - 2.(a)]1) > v} du.
J _-I n n
Tk

This together with Lemma 1 completes the proof.

Remark. Both Proposition 2 and Lemma 3 hold true if one replaces the norm

I1-11 by a measurable extended-valued seminorm.

Lemma 4. Let Xn’ ne N u {0} be DE[a,b]-vaZued random variables su~h that

L(Xn) - L(XO) in DE[a,b] and let A be a linear bounded operator on E. Then

L( I etAan(t)) 1 [ etAdXo(t)).
(a,b] (a,b]

Troof. Since the mapping

ethay(t) := etPy(t) - AetPy(t)dt « F

(a,b]

DELa,b]3 y » [
)
(a,b]

is continuous (cf. Billingsley (1968), p. 121), the Continuous Mapping Theorem

concludes the proof (cf. Billingsley (1968), Thm. 5.1).

Proof nf Theorem 1. Put

Y (t) := )l( e S%yx (s) and

{ -
ROREE e SUx(s), n < N o {0},

.................................
........................................
C R N N TP I A A R A R

-----------------------

................
.............
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By definition,Yn, ne N u {0} are DE[O,w)-va]ued random variables with inde-

pendent increments. Furthermore we have

d
¥ (=) - ¥ (t) = j e'Sden(s) = e'tQYn(w). O<t<wo;
(t,=)

. d .
fd + 1) = v (@) = eI e Sag (s 4 g) = eI (1), 50,1,

(0,1]
and for every n
[ __f 'SQ s (_j .
nj T e dxn(s+3) = Yn(l) are independent,
(0,]]
d
J e {0} v N, where "=" means "equal in distribution". Also we have
- [ -
= e m + | e (atl] < coswp I,

where C := 2e|l0,l - 1.

The necessity. We have that L(Xn(1)) => L(Xo(l)) and {log (1 + ||Xn(1)l|) :

ne N} is uniformly integrable. Using Lemma 3 we obtain that for every r > 1

and k > 0

(3) flog. (1 + ksup |IX (t)]|):ne N} is uniformly integrable.
r 0<t<1 n

Further, L(Xn(l)) —=> L(Xo(l)) implies that L(Xn)=> L(Xo) in DE[O,t] for every t>0
(cf. Gikhman and Skorohod (1974), Theorem VI. 5.5) and Lemma 4 yields

L(Yn(t)) -> L(Yo(t)) for every fixed t ¢ [0,o) as n » ». Moreover,

L(Yg(t)) = L(Yg(=)) as t » =. Therefore, to prove that L(Y (=)) —> L(Yy(=)),

as n > o, it is enough to show that for each ¢ > 0

(a) 1im 1im sup P{llYn(w) - Yn(s)ll > e} =0,

S0 N
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cf. Billingsley (1968), Theorem 4.2.
! Since the function t - lle'tol[ is submiltiplicative which vanishes at +o

there are positive constants a and b such that
-bt

11e” %0 < ae” " for every t > 0. letq= e <p<1and a T (1-p)p¥,

. - -
k = 0,1,2,... . For a givene >0 andm ¢ N such that a ]e(l-p)p ™51 we
obtain
P IYm) = (] > ) = P D) - V(1] > 0
[o0] J, [+ o] o -.| ..j
<PUT aatle sl > [ eag o3 < P> aTea™ay o)
j=m J=m J=m
<P sup 11X ()] > (p/@)I} < § Plioa , (1 + € sup X (£)[]) > §)
‘jZm Oct<l " “gEmo PO Toctar M
< E[log_, (1 + C sup ||X (t)]]) 1 + t .
- p/q oct<l " {log, (1 Cogt%llxn( M) > m)
Hence and from (3) we get
i 1im sup P{l]Yn(w) - Yn(m)ll >e} =0
. e N
5 which implies (4). The proof of the necessity is complete.
E The sufficiency. Note that
: (5) V(=) = Y (8) + [V (=) - ¥ ()],

i n
S Y () - Y _(t) is independent of Y (t) and Y (=) - Y _(t) S e~ t0y (»). Since b
' n n P n n n nt '° y

our assumption L(Yn(w)) => L(Yo(w)) we obtain that the following sets are

? conditionally compact

.

.

3
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{L(Yn(oo) - Yn(t)): D<t<o,ne N}
and

{L(Yn(t)): 0<t<o, ne N}

Using (5) and the fact that the characteristic functionals of infinitely
divisible distributions are not vanishing, we obtain for every seauence

{tn} c |10,»] such that t - tO as n > o

E(Yn(tn)) => L(Yo(to)) and

(6)
LY (=) = Y (8)) = L{Yg(=) - Yq(ty))

Since the conditional compactness of distributions implies the boundedness in

probability of the corresponding r.v.'s we can find r, > 1 such that

0

(7) sup Ssup P{||Yn(w) - Yn(t)ll >r} < %- for all r > o
neN 0_<_t_<_°°

By Proposition 2 we get for anya >0 and n ¢ N

Plsup 1Y (t) - ¥ (@)]] > 2r} < 2PL]|Y (=) - ¥ (a)]] > r}.

a<t<eo

Hence

2P{[ 1Y, (=) = Y (k)] > v} > Plsup [[Y (m) - ¥ (K)|| > 2r}

k<m<oo

m=1
Pisup ([} [Y (3*+1) - Y (§)I] > 2r} >
k<m  j=k

| v

P{sup IlYn(m+1) - Yn(m)ll > 4r}
k<m

1 -_;k[l-P (1Y, () = V(D11 > ar)
Jj=

1 -exp [- ] POY(54) - Y ()11 > 4]
=k

[ v
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Therefore

) P{lle-jQYn(1)|l >4r} < -log (1 - d,),
3= -

E where d, = d,(r) := 2 ng P{IIYn(m) - Yn(k)ll >r}and r > rg.

Note now that Ileoll > 1. Indeed, this follows from the inequality

X 1< ||eQ||m ||e'mQ|| and the assumption 1im ||e"mol! = 0.
X oo

Thus

] P(log*|1¥, (1)]]>l0g ar + § Tog |1e2|])
ik

- = 1 PUIY, (W] > ar e 1% 5"zkp{||e‘j°vn(1)|| > 4r} < -Tog (1-d

).
i 3 k

By (6) for any fixed r > 0 lim dk = 0. Using Lemma 1 we qet that

koo

{log (1 + }]Yn(1)]]): ne N} is uniformly integrable. Since for 0 <t <1

d
(8) Y (1) =Y (t) = I e“sodxn(s) - e‘tovn(l-t)
(t,1]

and (6) we obtain by Lemma 3 that

X (9) {log (1 + sup ||Y (t)]]|): n e N} 1is uniformly integrable.
o<t

We have

1
(10) e‘oxn(1) . [ eerYn(r) - e°vn(1) - } Oe”OYn(r)dr.
(0,1] 0

Therefore [|X (1)]] < C, sup 1Y (£)]], where C, := el 1QT(2e! 10113y anq (9
n O<t<1 M “

implies that {loa (1 + ||Xn(1)||):neml} is uniformly integrable.

To complete the proof of the sufficiency it is enouah to show that

L(Xn(]))r» L(x0(1)). In view of (10) and Lemma 4 it is sufficient to prove
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that L(Yn) => L(YO) in DE[O,l]. Since Yn’ n ¢ N, have independent increments

and for O <s<t 5_1

d
e = Y(s) = [ e Man ) = e (e - ),
(s,t]

(6) gives the weak convergence of all finite dimensional distributions of

stochastic processes {Yp(t): t e [0,1]}6e]v. Moreover for every ¢ > 0

1im 1im sup sup P{IIYn(t) - Yn(s)ll > ¢}
h-0 ns  [t-s|<h

1

;' < Tim 1im sup sup P{I(Yn(u)|| > C; e} = 0,

] T h0 o uc<h

5 where C; := max lle'toll. By Gikhman and Skorohod (1974) Theorem VI.S.S5.
~ O<t<1

L(Yn) => L(Y) in DELO,l], which completes the proof of Theorem 1.
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4. Proof of Theorem 2.

We begin this section with some auxilliary Temmas needed in the proof of
Theorem 2.
N Let ¥ be the class of all continuous non-decreasing functions ¥:[0,»)-[0,=)

with p(0) > 0, lim Q%El.: © and such that y(2t) < ay(t) for all t > 0 and

£
some a = a(y).
The following is a stronger version of the well-known criterium of the

uniform integrability, cf. Meyer (1966), T22. We assume additionally

that the constructed function ¢ satisfies the so-called Az-condition.

Lemma 5. TLet {fa: a e I} be a family of measurable functions defined on
a measurable space (S,S8) and let {va:a € 1} be a family of measures on S
such that Sup va(S) <o, If

¢ ael

(i) 1im sup | f

J ldv =0
tow el J{|f |>t) *

a

then there exists n function { € Y such that

(1) sup [ (v o 17,14, < =
ael /¢

conversely, if (i1) is satisfied for some nom-decreasing continuous fumction

w: [0,0) » [0,0) with 1im wut) , then (1) holds.
_'f_'

Lo
Proof. Following the proof of T22 in Meyer (1966) (with some obvious

modifications) we show that (i) holds if and only if there exists a non-decreasina

continuous function y: [0,o) > [0,») with 1im Y%El-= o such that

tro

of o, = R [} a
ZB? [S(w [f v < Put yy(t) = w(t) + 1. Then ;:? [s(w] If, )dv, < =
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To complete the proof it is enough to show that there exists by € ¥ such that
Yoy < Wy

Choose ¢ > 2 such that ¢

| v

sup (w;(t)/y;(t/2)) and define
O<t<1

wz(t) : w1(t) for t ¢ [0,1]

and, by induction, put

Wz(t) := min {w](t), sz(t/z)}

for t « [2"Y, 2", n=1,2,... . In other words

V() = min {u(8), cvy(/2),..., Mo (2/2"))

for t « [2"'1,2n], n=1,2,... .

Clearly, y, is continuous, non-decreasing, wz(O) > 0 and ¥,(2t) f_sz(t)- It

remains to show that 1im wz(t)/t = o, To this end observe that for every n > 1
ts -

n-j h| -
there exists 0 < j_ < n such that y (2") =¢ ™, (2™. Thus for t ¢ [2",2"+1]
—vn — 2 1

we have

va(t) v (E)n-‘]n(%(Z J)) .
t - 2n+T* 2 2 In

as t » =, which completes the proof.
Llemma 6. If ¢ € dand ¥ ¢ ¥, then Y o ¢ ¢ .

Proof. Since (¥ o ¢)(x + y) = w(o(x + y)) < w(co(x)o(y)) it is enouah to
prove the submultiplicity of y with a constant. The condition w(2t) < ay(t)
for every t > 0 yields y(st) < asqw(t), where q := 1ogza. Hence
(1) = w(s']s) < as'qw(s) and consequently ay(s)/¢(1) 3‘sq for every s > 0.

Finally we get y(st) < asTy(t) g.(azlw(l))w(s)w(t), which completes the proof.

.-V"\“Vr’
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It is well-known that any infinitely divisible distribution with Levy
measure concentrated on some ball has all exponential moments finite. The
following is a aeneralization of this result to seauences of infinitely

divisible distributions.
Lemma 7. Let a sequence u, = [an,Rn,Mn], ne N, be conditionally compact
and for some v > 0 Mn({l\x|| >r}) =0 forallne N. Then for every A >0

sup J{ exp (A {x] [y, (dx) < =.
" g

Proof. Let Yy, iF LO,Rn,O] and Vo T [0,0,Mn]. Then My = 6(an)£yn*vn and

the seauences {G(an): ne N}, {y.:

ni M N} and {vn: ne N} are conditionally

compact; cf. Araujo and Giné (1980), Theorem 1.4.9 and Corollary 3.4.6. Clearly

(
sup llanll < o, Also sup J exp(ellxllz)yn(dx) < o for some € > 0 (cf. e.a.
n n ’E

(
Chevet (1983), Theorem 1(1)). Hence for every A > 0 sup } exp(Xllx[\)Yn(dx)<w.
n
E

It remains to show that for every » > 0

(11) sup J exp (A {x[[)v,(dx} < =
n
E
Let us fix » > 0 and for each v, construct an infinitesimal trianaqular array of

random variables uniformly bounded by 2r which row sums weakly converoce to . :

an
cf. the proof of Corollary 3.3 in de Acosta (1982). Now from the sequence of

triangular arrays choose another one, say {Z .: 1 <j <k, n>1}, such that

i n

3 exp(xt{Snll) - J exp (;[lel)vn (dx) - C
E
k

n
as n -~ and d(L(S)) , v) < %, where S = } Z . and d denotes the Prokhorov
n g5

A T AL N
-

. .
N . ., A LAY LR

.. - - . “ .. .. .‘ \“ “ - .‘ .-‘ l.
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v metric. Therefore {L(Sn) ne N} is conditionally compact and Theorem 2.1 in

de Acosta and Gine (1979) yields
sup E exp (A]|S []) < .
n

p. This implies (11) and completes the proof.

2(8) = M(Bnl||x]| > 1)

= [o,o,nﬁ], neN.

Proof of Theorem 2. Let M)(B) := M(Bn{||x|| < 1}) and M

for B « B(E\ {0}). Define also u; 1= [an’Rn’Ml] and uﬁ
2

n and both {ul} and {uﬁ} are conditionally compact: cf.

. SR

0f course My = Uoox U
0 Araujo and Giné (1980), Theorem 1.4.9 and Corollary 3.4.6. Further, note that

for every function ¢ ¢ ¢ there are positive constants a and 8 such that
(12) o(x) < aeBl‘Xl‘, for all x ¢ E.

The sufficiency. Assume that

Yim sup | o(t)u (dx) = 0.

oo J
- t> neN {o(x)>t}
By Lemma 5 there exists y ¢ ¥ such that sup fE(w ° ¢)(x)un(dx) < », By Lemma 6
n
x =9 o ¢ e & and by (12) x(x) _<__aeBHxH for all x ¢ E and some o,8 > 0. Since
x ¢ ® we have x(y) = x(x +y - x) < cx(x + y)x(-x) for every x,y ¢ E and some

c > 0. Thus

e-Bllxllx(y) <oacx(x +y) for all x,y ¢ E.

Therefore,

s 8 9B

03) [ e Bl [ xynBion < ac [ x@hgyien)
E £ E
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and the quantity on the right-hand side is uniformly bounded for all n ¢ N.

By Lemma 7 sSup fEeB“X“ul (dx) := K < ». This together with the inequality
n

1= [exp (BlixlL - BlixI Duglen) < (| 1)@V et IX a2

E E E
e . - Ixjl1 -1 2
implies that inf fEe ! un(dx) > K*' > 0. By (13) we get sup fo(x)un(dx)<w-
neN - neN ~
So, finally we obtain
GZ(E)e "k
e sup [ x02x) = s fe ] kDT ) (607
ne N JE neN k=0 e
-Mﬁ(E) 2
ssupfe " (x(0) + [ x(XIME(G0)].
neN

E
Since {Mi} is conditionally compact, cf. Araujo and Gine (1980), Theorem 3.4.5,

sup MZ(E) < .  Therefore sup S x(x)Mz(dx) < », By Lemma 5 we get
neN " n e n

liT z?%q f{¢(x)>t}¢(x)Mﬁ(dx) = 0. Since {o(x) > t} < {|Ix]} > 1} for sufficiently

large t > 0 (cf. (12)) we obtain 1im sup S e 000M (dx) = 0, which ends
too neN {6(x)>t} n

the proof of the sufficiency.

. . 2
The necessity. Since we have that 1im sup f o(x)M (dx) = 0 and
tor0 nelN {¢(X)>t} n

sup Mi(E) < = Lemma 5 shows that for some function ye¥ sup fEx(x)Mﬁ(dx)<w,
neN nelN

where y := U o 5. By Lemma 6 w(x + y) < ex{x)x{y) for all x,v € E and some

c > 0. Similarly as in de Acosta (1980), Corollary 3.4 we obtain
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ME(E) ( © *k

e" J x(X)u,z,(dX) =1 (k) ]I x(X)(Mﬁ) (dx)
. E k=0 E
.;: - o ] -] ( 2 2 -
A = x(0) + ) (k!) cet x(x] +...04 xk)Mn(dx1)...M (dx,)
"8 - ) n k
. k=1 E E
' =) _ _ [
o < x(0) + 7 (k)T KT | xtami(ex))*
~ k=1 £

_ =1 ( 2

= x(0) + ¢ "[exp(c] x(x)M(dx)) - 1],

E
Hence sup fEx(x)ug(dx) < o, Using (12) and Lenma 7 we obtain

n
3 sup | x(xougtax) < c o sup [ B X hdan sup [ xivdian <=,
Iu neN neN neN
- E E E
s which by Lemma 5 gives that 1im sup S o(t)u_(dx)=0 and completes the
—~ t+ neN {o(x)>t} n

proof of Theorem 2.

Lot

,_ .
idd2dled

. -" .} -.' -...u". " .‘
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5. Proof of Theorem 3.

In the proof we shall use the following lemma:

Lemma 8. For every [0,0,M] ¢ ID-Iog there exists a sequence
. n
M =z

n aan(xnj), ne N, where a_. > 0 and x_; ¢ E, such that [0,0,Mn]—>]oo[0,0,M].

1 nJj nj

Proof. The proof of Lemma 8 is divided in three steps.

Step 1. Let [0,0,M] ¢ 1Dy and ¥ (B) := M(Ba{||x||> %}, BeB(E), nelN .

T —p—y
»oroe .‘ LU A )

Then M_are finite measures such that [0,0,Mn] r»loqL0,0,M].

Proof. Theorem 3.4.7 in Araujo and Gine (1980) gives that [0,0,# ] ->

[0,0,M]. Since S:p f|‘x“>tlog(1 + ||xl|)dMn(x)§ f\lx\l>t]°g(] + ||x|])dM(x)~0

as t » «, Theorem 2 completes the proof.

Step 2. Let M be a finite measure on E and [0,0,M] ID]oq' Then there
o0 (o]
=2 T o . .), . >0, Ta . <o . ,
are M_ jzla"JG(XnJ) where 33 0 ji]a"J < » and Xpj € £, such that

[0,0,Mn] f>]og[0,0,M].

Proof. Let for every n {Anj: J e N} be a partition of E onto non-empty

. . 1 =
Borel sets with d1am(Anj) < g Choose x. . e Any and put a . = M(Anj). Then

Mn > M and since M(E) < o, [0,0,Mn] => [0,0,M]. Furthermore for every s>1

we have

(
109(1 + | 1x|| M, (dx) = [ a1 + 11x. | )M(dx)
J{!l><!l>s} " y{j:llxm-ll>sm\. o g e
nJ

I A

[log(1 + |]x-x_.|1) + log (1 + | M(d
{j:|lxn.||>s} A nj |{x]1)IM(dx)
J nj

| A

(Tog 2)M{{|Ix{|>s-1}) + loa(1 + x| {)M(dx).
{}1x}]>s-1}

PP DA WA TR L W WP Wy




Therefore Theorem 2 completes the proof of Step 2.Combining Steps 1 and 2 and

the following obvious fact given below as Step 3 the proof of Lemma 8 follows.

[oo]

Step 3. Suppose M = 3 a.8(x;), with x; ¢ E, a, >0 and T a, < =, If
j=~|J J J J j J

og then [0,0,

n
[0,0,M] ¢ ID z

; ]ajé(xﬁ)J =>10gl0505M] as n > .

1

Proof of Theorem 3. Let u = [a,R,M] ¢ ID

Then Jo(u) := [a_,R_,M ],where

log’ )
(18)  a_=0a+ J e x [15(e™ )15 (x) M(dx)dt,
0"E\{0}
(15) R, = [we'tQRe'tQ*dt
0
(16) M_(F) = J metF)dt,  F < B(EV(O}),
0

and B = {||x]] < 1}; cf. Jurek (1982). From (15) we aet that QR +R Q* = P.
Hence the operator QR + R Q* is non-negative and symmetric, provided R 1is
the covariance operator of a Gaussian measure from L(Q). Conversely, if R' is
a Gaussian covariance operator such that QR' + R'Q* is non-negative, then
R' = IEe’tQ(QR' + R'Q*)e'tQ*dt and hence R' > e SQrre 5" £op all s > 0.
Thus R' is the covariance operator of a Gaussian measure from L(Q).

To complete the proof of Theorem 3, in view of Lemma 8 and Theorem 1, it

is enough to show that for every a ¢ E\{0}

(17) (6(a)), = M, , :

for some « > 0 and 2 « SQ (note that (cM)m cM ). It is easy to see that

the mapping o:SQ « RY & E\{0} given by n(u,t) := tQu is a homeomorphism.
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Hence for every a ¢ EN{Q} there exist = . R" and z . SQ such that a=qu.
Let F = p(AxB), where AcB(S +)

) and B ¢ B(R By (16) we obtain

Q

(6(a))_(F)

o0

fmé(uqz){squ: uedl, s e etB}dt
0

i

1A(z)[ = §(z)(A) ((IB(S)S']ds
. j
{t:e CLEB} 0

8l

- 1A(x)18(s)s'1d56(z)(dx)
0

r 5

- 1F(st)s']d56(z)(dx)
Q0

d] ( q ']d .

JO E s¥z)s 'ds

This proves (5(a))_(F)= M, (F) for F = p(A x B). Since p is a homeomorphism

z
this equality extends to all Borel sets F < E\{0}, which proves (17) and

completes the proof.




S TR .

]

(1]

24

REFERENCES

A. de Acosta (1980), Exponential moments of vector valued random series and
triangular arrays. Ann. Probab. 8, 381-389.

[2] A. de Acosta and E. Gine (1979). Convergence of moments and related functionals

(3]

[4]
[s]

(6]

L7]

L8]

£9]

[10]

]

[(12]

3}

(14]

o« s
O .

in the general 1imit theorem in Banach spaces. Z. Wahrscheinlichkeitstheorie
verw. Gebiete 48, 213-231.

A. Araujo and E. Gine (1980). The central limit theorem for real and Banach
valued random variables. Wiley, New York.

P. Billingsley (1968). Convergence of probability measures. Wiley, New York.

S. Chevet (1983). Gaussian measures and large deviations. Lecture Notes in

Mathematics 990, Springer-Verlag, 30-46.

I.I. Gikhman and A.V. Skorhod (1974).
Springer-Verlag, New York.

The theory of stochastic processes, vol. 1.

Z.J. Jurek (1982).
random variables.

An integral representation of operator-selfdecomposable
Bull. Acad. Polon. Sci. 30, 385-393.

2.J. Jurek (1982a). Structure of a class of operator-selfdecomposable proba-
bility measures. Ann. Probab. 10, 849-856.

Z.J. Jurek and W. Vervaat (1983). An integral representation for selfdecompe--
able Banach space valued random variables. Z. Wahrscheinlichkeitstheorie
verw. Gebiete 62, 247-262.

T. Lindvall (1973). Weak convergence of probability measures and random
functions in the function space D[0,»). J. Appl. Probab. 10, 109-121.

P.A. Meyer (1966). Probability and Potentials.
Mass.

Blairdell Publishina Co.

K. Sato and M. Yamazato (1984). Operator-selfdecomposable distributions as
1imit distributions of processes of Ornstein-Uhlenbeck type. Stochastic
Process. Appl. 17, 73-100.

A.V. Skorohod (1957). Limit theorems for stochastic processes with independent
increments. Theory Probab. Appl. 2, 138-171.

K. Urbanik (1978). Lévy's probability measures on Banach spaces. Studia
Math. 63, 283-308.

Center for Stochastic Processes
Department of Statistics
University of North Carolina
Chapel Hill, NC 27514

Department of Mathematics
Tufts University
Medford, MA 02155

..................
...........................
...........................................
''''''
Py

--------

-------



> n — . e
. - P L -
e LA T LNTIETE T




